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Equilibrium Isotope Effect on Hydrogen Distribution 
between Carbon- and Metal-Bound Sites. A Neutron 
Diffraction Study of Partially Deuterated 
Decacarbonyldihydriodomethylenetriosmium 

Sir: 

Neutron diffraction studies allow accurate location of light 
atoms in transition metal compounds, as recently reported 
examples have shown.2'3 As part of a program involving the 
use of neutron diffraction to define carefully the geometries 
of small hydrocarbon moieties bound to one or more metal 
atoms, we now report results for a partially deuterated sample 
of H2Os3(CO) 10CH2.

4 Because of the differences in sign and 
magnitude between the neutron scattering lengths of hydrogen 
and deuterium,5 we have been able to determine the abundance 
of H and D at each site in the partially deuterated molecule. 
These population data, supported by analogous data from so­
lution NMR spectra, reflect an equilibrium isotope effect on 
the H/D distribution that favors the incorporation of deute­
rium in the methylene group and, conversely, hydrogen in the 
osmium hydride positions. This effect is readily interpreted in 
terms of vibrational zero point energies and is general for any 
case involving exchange of hydrogen and deuterium between 
carbon- and metal-bound sites. 

The combination of D2Os3(CO) 10 and CH2N2 provides 
"Os3(CO) 10CH2D2", a mixture in solution of hydridomethyl 
and dihydridomethylene tautomers.4 A dichloromethane so­
lution of this mixture in an NMR tube held at - 2 0C yielded 
a crystal which was used for neutron data collection. The 
crystal had dimensions of 2.0 X 2.0 X 0.55 mm and weighed 
5 mg, which is relatively small for neutron diffraction, after 
being dried under vacuum. A smaller crystal of H2Os3-
(CO)I0CH2 (undeuterated) with dimensions 0.24 X 0.17 X 
0.06 mm was used for X-ray diffraction measurements. 

The details of the procedure used for the measurement of 
the X-ray6 and neutron7 diffraction data have been described 
previously. A total of 2258 reflections to 20 = 55° (X = 0.71069 
A) were measured on a full-circle Picker X-ray diffractometer 
at Illinois and 731 reflections to 2d = 60° (X = 1.142 (1) A) 
were determined at room temperature on an Electronics and 
Alloy four-circle diffractometer at the CP-5 reactor at Ar-
gonne National Laboratory. Based on the Laue symmetry and 
the systematic absences, the two possible space groups are 
Pnma (D2I No. 62)8 or the nonstandard Pn2\a (Pna2u C\v, 
No. 33).8 The lattice parameters of a = 18.692 (4), b = 10.250 
(5), and c = 8.918 (8) A were determined by least-squares 
refinement of 12 reflections in the range 20° < 26 < 40° using 
Mo Ka X-radiation. The structure was solved by the conven­
tional heavy-atom method in the space group Pnma using the 
X-ray data and independently by direct methods (MULTAN) 
using the neutron diffraction data. However, attempted re­
finement of the structure in the space group Pnma was un-
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successful owing to the disorder imposed by the mirror plane 
and subsequent refinement was based on an ordered structure 
in the space group Pn2\a. Full-matrix least-squares refinement 
of the neutron data, including hydrogen and deuterium atoms, 
converged and yielded discrepancy indices of R(F0) = 0.089, 
R(F0

2) = 0.075, and RW{F0
2) = 0.097. The molecular 

structure is shown in Figure 1. The hydrogen atom scattering 
amplitudes were treated as variables in the least-squares re­
finement, which resulted in derived scattering amplitudes of 
*H(i) = 0.23 (1), W ) = 0.24 (1), and bH(3) = -0.06 (1). The 
atom at the site of H(4) was not located9 on a final difference 
Fourier, and, therefore, its scattering length is estimated to be 
0.00 ± 0.03. The percentage of' H in each of the hydrogen sites 
is 42 (1) for H(I), 41 (1) for H(2), 70 (1) for H(3), and 64 (3) 
for H(4) based on the above scattering amplitudes. 

The methylene carbon atom is equidistant from Os( 1) and 
Os(2) even though these latter two atoms are chemically 
nonequivalent. The geometry of the CH2 ligand («t H-C-H 
= 106 (I)0) suggests that the CH2 fragment is best described 
in terms of sp3 hybridization. This situation is in contrast to 
that for heterocyclopropanes in which the exocyclic H-C-H 
angles are 114° or greater.10 The X-ray structures of two re­
lated molecules, Ru2(CH2)3(PMe3)6

1; and Cp2Rh2(CO)2-
(CH2)12 have been reported. A point of interest in these sys­
tems, all of which contain methylene ligands bridging two 
metal atoms bonded by a metal-metal single bond, is that the 
M-C-M angle is nearly constant at 80 ± 2°. 

The solution 1H NMR spectrum of "Os3(CO)10CH2D2" 
also shows a preference for H over D in the metal hydride sites 
of both the methylene and the methyl tautomers. For the 
methylene isomer no difference in intensity between the two 
hydride sites or between the two methylene sites could be es­
tablished after repeated integration. The methylene/hydride 
intensity ratio was 0.75 (10). If a single parameter K2 is defined 
as the equilibrium constant for a pairwise H/D interchange 
in the methylene isomer, then the possible configurations for 
a dideuterated (di) species are related as shown. A similar set 

H D 

D' ^H 

of monodeuterated (d\) configurations also will contribute to 
the observed intensities. For the methyl isomer at each level 
of deuteration there are only two configurations, which are 
related by the equilibrium constant K\. The best set of pa­
rameters was determined by minimizing the difference between 
experimental and calculated intensities, with K\, K2, Keq 
(relating the methyl and methylene tautomers), d\, and di as 
variables.13 The results were A:, = 1.74 (23), K2 = 1.58(21), 
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Figure 1. The H2OSs(CO)IoCH2 molecule, with thermal ellipsoids scaled 
to 50% probability. The atom labeled H(4) was not located (see text). The 
intramolecular bond distances include 0s(l)-0s(2) = 2.834 (6), 
Os(2)-Os(3) = 2.870 (7), Os(l)-Os(3) = 3.066 (6), Os(I)-C(I) = 
2.15 (1), and Os(2)-C(l) = 2.15 (1) A. The H-C-H angle is 106 (I)0. 

Keq = 2.45,14 and d\/d2 = 0.20. The site populations deter­
mined by neutron diffraction were analyzed similarly with K2, 
d\, and d2 variables.15 The results were K2 = 2.30 (10) and 
d\/d2 = 0.17. The apparent difference in the K2 values deter­
mined by NMR and by neutron diffraction is not statistically 
significant.16 

The equilibrium isotope effect observed for the partially 
deuterated tautomers is readily understood qualitatively in 
terms of zero-point energies. The C-H group has significantly 
higher vibrational frequencies than the Os-H-Os group, so 
that partial replacement by deuterium will lead to preferential 
placement of the lighter nucleus in the lower frequency site.17 

The vibrational data required for precise calculation of the 
isotope effect is not available; modes for bridging hydrogen are 
especially difficult to identify.18 However, consideration of 
estimated frequencies leads to a range of calculated values 
from ~1.5 to 3.5,19 which is consistent with the experimental 
results. More importantly, because of the large disparity in 
zero-point energies, a value in this range should be charac­
teristic of a fully equilibrated H/D distribution among carbon 
(or nitrogen or oxygen) and metal sites.22 Therefore, the effect 
should be an important tool for detecting reversible hydro­
gen-transfer processes in organometal cluster compounds.23 

It should also be considered for such processes occurring on 
metal surfaces. 
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Reactions of Dioxygen Platinum(II) Complexes 
with Activated Acetylenes 

Sir: 

Recently, we have synthesized a series of dioxygen platinum 
complexes, containing phosphine ligands having various de­
grees of bulkiness and basicity, which are useful intermediates 
in the preparation of the corresponding dihydrides.1 We now 
wish to describe the interesting behavior of these dioxygen 
complexes toward activated acetylenes. 

Dioxygen platinum complexes, Pt(PR3)2(02) (PR3 = PCy3, 
PjPr3, P'Bu2"Bu, P'Bu2Me, PPh3), react readily under am­
bient conditions with acetylenes such as hexafluorobut-2-yne 
(C4F6) and dimethyl acetylenedicarboxylate (DMA) to give 
1,2 addition of the dioxygen molecule across the acetylenic 
C=C bond (eq 1). 
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